Skip to content
🤔prompts chat🧠
🔍
question:Two equal triangles ( KLM ) and ( KLN ) share a common side ( KL ). The angles ( widehat{KLM} ) and ( widehat{LKN} ) are both ( pi / 3 ). The lengths of the sides are given by ( |KL| = a ) and ( |LM| = |KN| = 6a ). The planes ( KLM ) and ( KLN ) are mutually perpendicular. A sphere touches the segments ( LM ) and ( KN ) at their midpoints. Find the radius of the sphere.

answer:Given two equal triangles (KLM) and (KLN) sharing a common side (KL) with (widehat{KLM} = widehat{LKN} = frac{pi}{3}), (|KL| = a), and (|LM| = |KN| = 6a), we need to find the radius of a sphere that touches (LM) and (KN) at their midpoints. Furthermore, the planes (KLM) and (KLN) are mutually perpendicular. 1. Let's denote: - The midpoint of (LM) as (P). - The midpoint of (KN) as (Q). - The projections of the center of the sphere (O) onto planes (KLM) and (KLN) as (O_1) and (O_2), respectively. 2. The point where the projections (O_1) and (O_2) fall on (KL) must be the same point since the planes are perpendicular. We denote this point as (R). 3. Since the planes (KLM) and (KLN) are perpendicular and both angles at (K) ((widehat{KLM} ) and (widehat{LKN})) are (frac{pi}{3}), the tetrahedron formed with (K, L, M), and (N) gives rise to two right triangles connecting at (KL). 4. Consider the triangle (triangle PLR) in plane (KLM) and (triangle QNR) in plane (KLN). To find the radius, we calculate: [ |RL| = KL cdot tanleft(frac{pi}{3}right) = a cdot sqrt{3} ] [ |RP| = frac{|LM|}{2} = 3a, quad text{and } |RQL| = KL = a ] 5. Calculate the distances from (R) to the respective triangles: [ |RQ| = frac{|KL|}{2} = frac{a}{2} ] [ |LO_1| = |LN| = 6a ] 6. Use the Pythagorean theorem in (triangle RPO_1): [ |PO_1| = sqrt{|PR|^2 - |RL|^2} = sqrt{(6a)^2 + (3a sqrt{3})^2} = sqrt{36a^2 + 27a^2} = sqrt{63a^2} = 3a sqrt{7} ] 7. Combining the distances, the radius (R) of the sphere is: [ R = sqrt{left(frac{137a^2}{12}right)} = frac{a sqrt{137}}{2 sqrt{3}} = frac{a sqrt{137}}{2} ] Thus, the radius of the given sphere is: [ boxed{frac{a}{2} sqrt{frac{137}{3}}} ]

question:For integers ( n geq 2 ), find the largest real number ( lambda(n) ) such that for any ( alpha_i in left(0, frac{pi}{2}right) ) ( (i=1,2,ldots,n) ), the following holds: [ begin{aligned} &3left(sum_{i=1}^{n} tan^2 alpha_iright)left(sum_{i=1}^{n} cot^2 alpha_iright) + &11left(sum_{i=1}^{n} sin^2 alpha_iright)left(sum_{i=1}^{n} csc^2 alpha_iright) + &11left(sum_{i=1}^{n} cos^2 alpha_iright)left(sum_{i=1}^{n} sec^2 alpha_iright) &geq 25left(sum_{i=1}^{n} sin alpha_iright)^2 + 25left(sum_{i=1}^{n} cos alpha_iright)^2 + &lambda(n)left(alpha_1 alpha_nright)^2. end{aligned} ]

answer:Given the problem to find the maximum real number lambda(n) for integers n geq 2 such that for any alpha_i in left(0, frac{pi}{2}right), i=1,2, ..., n, the following inequality holds: [ begin{array}{l} 3left(sum_{i=1}^{n} tan^2 alpha_iright)left(sum_{i=1}^{n} cot^2 alpha_iright) + 11left(sum_{i=1}^{n} sin^2 alpha_iright)left(sum_{i=1}^{n} csc^2 alpha_iright) + 11left(sum_{i=1}^{n} cos^2 alpha_iright)left(sum_{i=1}^{n} sec^2 alpha_iright) geqslant 25left(sum_{i=1}^{n} sin alpha_iright)^{2}+25left(sum_{i=1}^{n} cos alpha_iright)^{2}+lambda(n)left(alpha_{1}-alpha_{n}right)^{2}. end{array} ] To solve this problem, we break the complex expression into manageable parts F_1, F_2 and F_3 and find the detailed behavior of each one. 1. **Evaluation of F_1:** Define: [ F_1=left(sum_{i=1}^{n} tan^2 alpha_iright)left(sum_{i=1}^{n} cot^2 alpha_iright)-n^2. ] Expanding F_1: [ F_1 = frac{1}{2} sum_{i=1}^{n} sum_{j=1}^{n}left(tan^2 alpha_i cdot cot^2 alpha_j + tan^2 alpha_j cdot cot^2 alpha_i - 2right). ] Simplify the terms inside the sum: [ tan^2 alpha_i cdot cot^2 alpha_j = frac{sin^2 alpha_i}{cos^2 alpha_i} cdot frac{cos^2 alpha_j}{sin^2 alpha_j} = frac{sin^2 alpha_i cos^2 alpha_j}{cos^2 alpha_i sin^2 alpha_j}. ] Now, transform and combine the terms using trigonometric identities: [ frac{1}{2} sum_{i=1}^{n} sum_{j=1}^{n} frac{left(tan^2 alpha_i - tan^2 alpha_jright)^2}{tan^2 alpha_i cdot tan^2 alpha_j} = frac{1}{2} sum_{i=1}^{n} sum_{j=1}^{n} frac{left(tan alpha_i - tan alpha_jright)^2}{tan alpha_i cdot tan alpha_j} cdot frac{left(tan alpha_i + tan alpha_jright)^2}{tan alpha_i cdot tan alpha_j}. ] Using double angle formulas and sine properties: [ = frac{1}{2} sum_{i=1}^{n} sum_{j=1}^{n} frac{sin^2(alpha_i - alpha_j)}{sin alpha_i cos alpha_i sin alpha_j cos alpha_j} cdot frac{sin^2(alpha_i + alpha_j)}{sin alpha_i cos alpha_i sin alpha_j cos alpha_j}. ] Combining into a complete term: [ = 8 sum_{i=1}^{n} sum_{j=1}^{n} frac{sin^2(alpha_i - alpha_j)}{sin 2 alpha_i sin 2 alpha_j} cdot frac{sin^2(alpha_i + alpha_j)}{sin 2 alpha_i sin 2 alpha_j}. ] 2. **Evaluation of F_2:** Similarly, analyze: [ F_2 = left(sum_{i=1}^{n} sin^2 alpha_i right)left(sum_{i=1}^{n} csc^2 alpha_iright) - n^2. ] Seeing the pattern is similar: [ = frac{1}{2} sum_{i=1}^{n} sum_{j=1}^{n} frac{left(sin alpha_i - sin alpha_j right)^2 left(sin alpha_i + sin alpha_j right)^2}{cos^2left(alpha_i - alpha_jright) - cos^2left(alpha_i + alpha_jright)}. ] 3. **Combining Terms:** Each portion F_1, F_2, F_3 sums up to complement the structured inequality applied from combining tangents, sines, and cosines for maximum bound. Validate the inclusion terms remain balanced: [ 11n^2 + 3n^2 + 11n^2 geqslant 25 (text{sin and cos sums terms expressions structured}) +lambdaleft(alpha_{1}-alpha_{n}right)^2. ] # Conclusion: From detailed property breakdowns ensuring trigonometric evaluations, the maximum valid lambda(n) ensuring the bounds form solid inequality while maintaining balance for all alpha_i remains integral for [ boxed{lambda(n) = 25} ] making the maximum lambda(n) straightforward balance for n integral constraints.

question:Given the sequence {a_n}, where a_1=2 and a_{n+1}=1frac{1}{a_n}, find the value of a_5. A) frac{1}{2} B) 1 C) 2 D) 1

answer:This problem primarily tests the understanding of recursive formulas in sequences. We can find the value of a_5 by using the given recursive formula. Step 1: Find a_2: a_2 = 1 - frac{1}{a_1} = 1 - frac{1}{2} = frac{1}{2} Step 2: Find a_3: a_3 = 1 - frac{1}{a_2} = 1 - frac{1}{frac{1}{2}} = 1 - 2 = -1 Step 3: Find a_4: a_4 = 1 - frac{1}{a_3} = 1 - frac{1}{-1} = 1 + 1 = 2 Step 4: Find a_5: a_5 = 1 - frac{1}{a_4} = 1 - frac{1}{2} = frac{1}{2} Hence, the correct answer is boxed{A) frac{1}{2}}

question:A triangle has side lengths of a, b, and c (where a, b, and c are all prime numbers), and a+b+c=16. The shape of this triangle is (  ) A: A rightangled triangle B: An isosceles triangle C: An equilateral triangle D: A rightangled triangle or an isosceles triangle

answer:**Answer**: Since a+b+c=16, and a, b, c are all prime numbers, the values of a, b, c must be one of the following: 1, 2, 3, 5, 7, 11, 13. Therefore, one of a, b, c is 2, assume a=2 without loss of generality. Then b+c=14, and both b and c are odd prime numbers. Since 14=3+11=7+7, and 2+3<11, thus sides of lengths 2, 3, and 11 cannot form a triangle; but 2+7>7, thus sides of lengths 2, 7, and 7 can form a triangle. Therefore, this triangle is an isosceles triangle. So the correct answer is boxed{text{B: An isosceles triangle}}.

Released under the MIT License.

has loaded